摘要

数学上,有理数是一个整数a和一个非零整数b的比,例如3/8,通则为a/b,故又称作分数。0也是有理数。

有理数是整数和分数的集合,整数亦可看做是分母为一的分数。

有理数的小数部分有限或为循环。不是有理数的实数遂称为无理数。

有理数集可用大写黑正体符号Q代表。但Q并不表示有理数,Q表示有理数集。有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。

1. 有理数的定义

有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。
有理数的大小顺序的规定:如果a-b是正有理数,当a大于bb小于a,记作a>bb<a。任何两个不相等的有理数都可以比较大小。
有理数集与整数集的一个重要区别是,有理数集是密集的,而整数集不是稠密的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。
有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

2. 混合运算法则编辑

有理数的加减乘除混合运算,如无括号指出先做什么运算,按照“先乘除,后加减”的顺序进行,如果是同级运算,则按照从左到右的顺序依次计算。